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4.5 
CONFIDENCE INTERVALS AND HYPOTHESIS 
TESTS FOR THE MEAN

Let X1, X2, . . . , Xn be IID random variables with fi nite mean m and fi nite variance 
s2. (Also assume that s2 . 0, so that the Xi’s are not degenerate random variables.) 
In this section we discuss how to construct a confi dence interval for m and also the 
complementary problem of testing the hypothesis that m 5 m0.

We begin with a statement of the most important result in probability theory, the 
classical central limit theorem. Let Zn be the random variable [X(n) 2 m]y2s2yn, 
and let Fn(z) be the distribution function of Zn for a sample size of n; that is, Fn(z) 5 
P(Zn # z). [Note that m and s2yn are the mean and variance of X(n), respectively.] 
Then the central limit theorem is as follows [see Chung (1974, p. 169) for a proof].

T H E O R E M  4 . 1 .  Fn(z) S £(z) as n S `, where F(z), the distribution function of a 
normal random variable with m 5 0 and s2 5 1 (henceforth called a standard normal 
random variable; see Sec. 6.2.2), is given by

 £(z) 5
1

12p
 #

z

2`
e2y2y2 dy  for 2` , z , `

The theorem says, in effect, that if n is “suffi ciently large,” the random variable Zn 
will be approximately distributed as a standard normal random variable, regardless 
of the underlying distribution of the Xi’s. It can also be shown for large n that the 
sample mean X(n) is approximately distributed as a normal random variable with 
mean m and variance s2yn.

The diffi culty with using the above results in practice is that the variance s2 is 
generally unknown. However, since the sample variance S2(n) converges to s2 as n 
gets large, it can be shown that Theorem 4.1 remains true if we replace s2 by S2(n) 
in the expression for Zn. With this change the theorem says that if n is suffi ciently 
large, the random variable tn 5 [X(n) 2 m]y2S2(n)yn is approximately distributed 
as a standard normal random variable. It follows for large n that

 P a2z12ay2 #
X(n) 2 m

2S2(n)yn
# z12ay2b

 5 P cX(n) 2 z12ay2 B
S2(n)

n
# m # X(n) 1 z12ay2 B

S2(n)
n
d

 < 1 2 a  (4.10)

where the symbol ¯ means “approximately equal” and z12ay2 (for 0 , a , 1) is 
the upper 1 2 ay2 critical point for a standard normal random variable (see 
Fig. 4.15 and the last line of Table T.1 of the Appendix at the back of the book). 
Therefore, if n is suffi ciently large, an approximate 100(1 2 a) percent confi dence 
interval for m is given by

 X(n) 6 z12ay2B
S2(n)

n
 (4.11)
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234 review of basic probability and statistics

For a given set of data X1, X2,  .  .  .  , Xn, the lower confi dence-interval endpoint 

l(n, a) 5 X(n) 2 z12ay22S2(n)yn and the upper confi dence-interval endpoint 
u(n, a) 5 X(n) 1 z12ay22S2(n)yn are just numbers (actually, specifi c realizations 
of random variables) and the confi dence interval [l(n, a), u(n, a)] either contains m 
or does not contain m. Thus, there is nothing probabilistic about the single confi -
dence interval [l(n, a), u(n, a)] after the data have been obtained and the interval’s 
endpoints have been given numerical values. The correct interpretation to give to 
the confi dence interval (4.11) is as follows [see (4.10)]: If one constructs a very 
large number of independent 100(1 2 a) percent confi dence intervals, each based 
on n observations, where n is suffi ciently large, the proportion of these confi dence 
intervals that contain (cover) m should be 1 2 a. We call this proportion the cover-
age for the confi dence interval.

E X A M P L E  4 . 2 6 .  To further amplify the correct interpretation to be given to a con-
fi dence interval, we generated 15 independent samples of size n 5 10 from a normal 
distribution with mean 5 and variance 1. For each data set we constructed a 90 per-
cent confi dence interval for m, which we know has a true value of 5. In Fig. 4.16 we 
plot the 15 confi dence intervals vertically (the dot at the center of the confi dence 
interval is the sample mean), and we see that all intervals other than 7 and 13 cover 
the mean value at height 5. In general, if we were to construct a very large number of 
such 90 percent confi dence intervals, we would fi nd that 90 percent of them will, in 
fact, contain (cover) m.

The diffi culty in using (4.11) to construct a confi dence interval for m is in know-
ing what “n suffi ciently large” means. It turns out that the more skewed (i.e., non-
symmetric) the underlying distribution of the Xi’s, the larger the value of n needed 
for the distribution of tn to be closely approximated by F(z). (See the discussion 
later in this section.) If n is chosen too small, the actual coverage of a desired 
100(1 2 a) percent confi dence interval will generally be less than 1 2 a. This is 
why the confi dence interval given by (4.11) is stated to be only approximate.

In light of the above discussion, we now develop an alternative confi dence- 
interval expression. If the Xi’s are normal random variables, the random variable 

tn 5 [X(n) 2 m]y2S2(n)yn has a t distribution with n 2 1 degrees of freedom (df) 

f (x)

Shaded area � 1 � �

xz1��/2�z1��/2 0

FIGURE 4.15
Density function for the standard normal distribution.
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[see, for example, Hogg and Craig (1995, pp. 181–182)], and an exact (for any 
n $ 2) 100(1 2 a) percent confi dence interval for m is given by

 X(n) 6 tn21, 12ay2B
S2(n)

n
 (4.12)

where tn21,12ay2 is the upper 1 2 ay2 critical point for the t distribution with n 2 1 df. 
These critical points are given in Table T.1 of the Appendix at the back of the book. 
Plots of the density functions for the t distribution with 4 df and for the standard nor-
mal distribution are given in Fig. 4.17. Note that the t distribution is less peaked and 
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FIGURE 4.16
Confi dence intervals each based on a sample of n 5 10 observations from a normal 
distribution with mean 5 and variance 1.

f(x)
Standard normal distribution

t distribution with 4 df

x0

FIGURE 4.17
Density functions for the t distribution with 4 df and for the standard 
normal distribution.
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has longer tails than the normal distribution, so, for any fi nite n, tn21,12ay2 . z12ay2. 
We call (4.12) the t confi dence interval.

The quantity that we add to and subtract from X(n) in (4.12) to construct the 
confi dence interval is called the half-length of the confi dence interval. It is a mea-
sure of how precisely we know m. It can be shown that if we increase the sample 
size from n to 4n in (4.12), then the half-length is decreased by a factor of 
 approximately 2 (see Prob. 4.20).

In practice, the distribution of the Xi’s will rarely be normal, and the confi dence 
interval given by (4.12) will also be approximate in terms of coverage. Since 
tn21,12ay2 . z12ay2, the confi dence interval given by (4.12) will be larger than 
the one given by (4.11) and will generally have coverage closer to the desired level 
1 2 a. For this reason, we recommend using (4.12) to construct a confi dence inter-
val for m. Note that tn21,12ay2 S z12ay2 as n S `; in particular, t40,0.95 differs from 
z0.95  by less than 3 percent. However, in most of our applications of (4.12) in 
Chaps. 9, 10, and 12, n will be small enough for the difference between (4.11) and 
(4.12) to be appreciable.

E X A M P L E  4 . 2 7 .  Suppose that the 10 observations 1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 
1.58, 1.55, 0.50, and 1.09 are from a normal distribution with unknown mean m and that 
our objective is to construct a 90 percent confi dence interval for m. From these data we get

 X(10) 5 1.34  and  S2(10) 5 0.17

which results in the following confi dence interval for m:

 X(10) 6 t9,0.95 B
S2(10)

10
5 1.34 6 1.83 B

0.17

10
5 1.34 6 0.24

Note that (4.12) was used to construct the confi dence interval and that t9,0.95 was taken 
from Table T.1. Therefore, subject to the interpretation stated above, we claim with 
90 percent confi dence that m is in the interval [1.10, 1.58].

We now discuss how the coverage of the confi dence interval given by (4.12) is 
affected by the distribution of the Xi’s. In Table 4.1 we give estimated coverages for 
90 percent confi dence intervals based on 500 independent experiments for each of 
the sample sizes n 5 5, 10, 20, and 40 and each of the distributions normal, expo-
nential, chi square with 1 df (a standard normal random variable squared; see the 
discussion of the gamma distribution in Sec. 6.2.2), lognormal (eY, where Y is a 

TABLE 4.1

Estimated coverages based on 500 experiments

Distribution Skewness v n 5 5 n 5 10 n 5 20 n 5 40

Normal  0.00  0.910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.852
Hyperexponential 6.43 0.584 0.586 0.682 0.774
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standard normal random variable; see Sec. 6.2.2), and hyperexponential whose dis-
tribution function is given by

 F(x) 5 0.9F1(x) 1 0.1 F2(x)

where F1(x) and F2(x) are the distribution functions of exponential random variables 
with means 0.5 and 5.5, respectively. For example, the table entry for the  exponential 
distribution and n 5 10 was obtained as follows. Ten observations were generated from 
an exponential distribution with a known mean m, a 90 percent confi dence interval was 
constructed using (4.12), and it was determined whether the interval con tained m. (This 
constituted one experiment.) Then the whole procedure was repeated 500 times, and 
0.878 is the proportion of the 500 confi dence intervals that contained m. Note that the 
coverage for the normal distribution and n 5 10 is 0.902 rather than the expected 0.900, 
since the table is based on 500 rather than an infi nite number of experiments.

Observe from the table that for a particular distribution, coverage generally gets 
closer to 0.90 as n gets larger, which follows from the central limit theorem (see 
Prob. 4.22). (The results for the exponential distribution would also probably follow 
this behavior if the number of experiments were larger.) Notice also that for a particular 
n, coverage decreases as the skewness of the distribution gets larger, where skewness 
is defi ned by

 n 5
E[ (X 2 m)3]

(s2)3y2   2` , n , `

The skewness, which is a measure of symmetry, is equal to 0 for a symmetric distri-
bution such as the normal. We conclude from the table that the larger the skewness 
of the distribution in question, the larger the sample size needed to obtain satisfac-
tory (close to 0.90) coverage.

*We saw in Table 4.1 that there is still signifi cant degradation in coverage prob-
ability for sample sizes as large as 40 if the data come from a highly skewed distribu-
tion such as the lognormal, which is not at all uncommon in practice. As a result we 
now discuss an improved confi dence developed by Willink (2005), which computes 
an estimate of the skewness n and uses this to obtain a confi dence interval with cov-
erage closer to the nominal value 1 2 a than that for the standard t confi dence given 
by (4.12). Let

  m̂3 5

n ^
n

i51

[Xi 2 X(n)]3

(n 2 1)(n 2 2)
 ,  a 5

m̂3

61n[S2(n)]3y2 ,

and

 G(r) 5
[1 1 6a(r 2 a)]1y3 2 1

2a

where m̂3y[S2(n) ]3y2 is an estimator for the skewness n. Then an approximate 
100(1 2 a) percent confi dence interval for m is given by

[X(n) 2 G(tn21,12ay2)2S2(n)yn, X(n) 2 G(2tn21,12ay2)2S2(n)yn] (4.13)

*The discussion of the Willink confi dence interval may be skipped on a fi rst reading.
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E X A M P L E  4 . 2 8 .  For the data of Example 4.27, we now construct a 90 percent confi -
dence interval for m using the Willink confi dence interval given by (4.13). We get

 m̂3 5 20.062, a 5 20.048, G(r) 5
[1 2 0.288(r 1 0.048)]1y3 2 1

20.096

and the following 90 percent confi dence interval for m:

 [1.34 2 0.31, 1.34 1 0.20]  or  [1.04, 1.54]

In order to get an idea how much improvement in coverage probability might 
be obtained by using the Willink confi dence interval given by (4.13) instead of the t 
confi dence interval given by (4.12), we regenerated using different random numbers 
the observations for the entry in Table 4.1 corresponding to the lognormal distribu-
tion and n 5 10. Based again on 500 experiments, the estimated coverages for the 
Willink and t confi dence intervals were 0.872 and 0.796, respectively. Thus, the 
Willink confi dence interval produces a coverage probability “close” to the nominal 
level 0.90 even for the highly skewed lognormal distribution and a sample size of 
only 10. On the other hand, the average half-length for the Willink confi dence inter-
val was 76 percent larger than the average half-length for the t confi dence interval 
in this case. The decision whether to use the t or Willink confi dence interval should 
depend on the relative importance one places on coverage close to the nominal level 
1 2 a and a small half-length.

Assume that X1, X2, . . . , Xn are normally distributed (or are approximately so) 
and that we would like to test the null hypothesis H0: m 5 m0 against the alternative 
hypothesis H1: m ? m0, where m0 is a fi xed, hypothesized value for m. Intuitively, we 
would expect that if 0X(n) 2 m0 0  is large [recall that X(n) is the point estimator for 
m], H0 is not likely to be true. However, to develop a test with known statistical prop-
erties, we need a statistic (a function of the Xi’s) whose distribution is known when 
H0 is true. It follows from the above discussion that if H0 is true, the statistic 
tn 5 [X(n) 2 m0]y2S2(n)yn will have a t distribution with n 2 1 df. Therefore, 
consistent with our intuitive discussion above, the form of our (two-tailed) hypoth-
esis test for H0 is

 c If 0 tn 0 . tn21,12ay2, reject H0

If 0 tn 0 # tn21,12ay2, fail to reject H0
 (4.14)

The portion of the real line that corresponds to rejection of H0, namely, the set of all 
x such that 0x 0 . tn21,12ay2, is called the rejection (or critical) region for the test, and 
the probability that the statistic falls in the rejection region given that H0 is true, 
which is clearly equal to a, is called the level (or size) of the test. Typically, an ex-
perimenter will choose the level equal to 0.05 or 0.10. We call the hypothesis test 
given by (4.14) the t test.

When one performs a hypothesis test, two types of errors can be made. If one 
rejects H0 when in fact it is true, this is called a Type I error. The probability of Type I 
error is equal to the level a and is thus under the experimenter’s control. If one fails 
to reject H0 when it is false, this is called a Type II error. For a fi xed level a and 
sample size n, the probability of a Type II error, which we denote by b, depends on 
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what is actually true (other than H0: m 5 m0), and is usually unknown. We call 
d 5 1 2 b the power of the test, and it is equal to the probability of rejecting H0 
when it is false. There are four different situations that can occur when one tests the 
null hypothesis H0 against the alternative hypothesis H1, and these are delineated in 
Table 4.2 along with their probabilities of occurrence.

Clearly, a test with high power is desirable. If a is fi xed, the power can only be 
increased by increasing n. Since the power of a test may be low and unknown to us, this 
is why we say “fail to reject H0” (instead of “accept H0”) when the statistic tn does not 
lie in the rejection region. (When H0 is not rejected, we generally do not know with any 
certainty whether H0 is true or whether H0 is false, since our test may not be powerful 
enough to detect any difference between H0 and what is actually true.)

E X A M P L E  4 . 2 9 .  For the data of Example 4.27, suppose that we would like to test the 
null hypothesis H0: m 5 1 against the alternative hypothesis H1: m ? 1 at level a 5 0.1. 
Since

 t10 5
X(10) 2 1

2S2(10)y10
5

0.34

20.17y10
5 2.65 . 1.83 5 t9,0.95

we reject H0.

E X A M P L E  4 . 3 0 .  For the null hypothesis H0: m 5 1 in Example 4.29, we can estimate 
the power of the test when, in fact, the Xi’s have a normal distribution with m 5 1.5 and 
standard deviation s 5 1. (This is H1.) We randomly generated 1000 independent 
observations of the statistic t10 5 [X(10) 2 1]y2S2(102y10 under the assumption 
that H1 is true. For 433 out of the 1000 observations, 0 t10 0 . 1.83 and, therefore, the es-
timated power is d̂ 5 0.433.  Thus, if H1 is true, we will only reject the null hypothesis 
H0 approximately 43 percent of the time for a test at level a 5 0.10. To see what effect 
the sample size n has on the power of the test, we generated 1000 observations of t25 
(n 5 25) when H1 is true and also 1000 observations of t100 (n 5 100) when H1 is true 
(all Xi’s were normal). The estimated powers were d̂ 5 0.796 and d̂ 5 0.999, respec-
tively. It is not surprising that the power is apparently an increasing function of n, since 
we would expect to have a better estimate of the true value of m when n is large. [Note 
that in the case of normal sampling and a known standard deviation, as in this example, 
the power of the test can actually be computed numerically, obviating the need for simu-
lation as done here; see, for example, Devore (2008, pp. 302–303).]

It should be mentioned that there is an intimate relationship between the confi -
dence interval given by (4.12) and the hypothesis test given by (4.14). In particular, 
rejection of the null hypothesis H0: m 5 m0 is equivalent to m0 not being contained 

TABLE 4.2

Hypothesis-testing situations and their 
corresponding probabilities of occurrence

       H0
Outcome

True False

Reject a d 5 1 2 b

Fail to reject 1 2 a b
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in the confi dence interval for m, assuming the same value of a for both the hypoth-
esis test and the confi dence interval (see Prob. 4.28). However, the confi dence in-
terval also gives you a range of possible values for m, and in this sense it is the 
preferred methodology.

4.6 
THE STRONG LAW OF LARGE NUMBERS

The second most important result in probability theory (after the central limit theo-
rem) is arguably the strong law of large numbers. Let X1, X2, . . . , Xn be IID random 
variables with fi nite mean m. Then the strong law of large numbers is as follows [see 
Chung (1974, p. 126) for a proof].

T H E O R E M  4 . 2 .  X(n) S m w.p. 1 as n S `.

The theorem says, in effect, that if one performs an infi nite number of experiments, 
each resulting in an X(n), and n is suffi ciently large, then X(n) will be arbitrarily 
close to m for almost all the experiments.

E X A M P L E  4 . 3 1 .  Suppose that X1, X2, . . . are IID normal random variables with m 5 1 
and s2 5 0.01. Figure 4.18 plots the values of X(n) for various n that resulted from 
sampling from this distribution. Note that X(n) differed from m by less than 1 percent 
for n $ 28.

X̄(n)

n403020100
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.02

 � � 1.00

FIGURE 4.18
X(n) for various values of n when the Xi’s are normal random variables with m 5 1 
and s2 5 0.01.
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